本文介绍利用PaddleOCR训练调优印地语-英语OCR模型的过程。先配置环境、准备检测和识别数据,再训练检测模型并通过自蒸馏调优,使H-mean提升约15.2%;训练识别模型并以enhanced_ctc调优,准确率提升2%左右。最后将模型转成inference和serving模型,完成部署与服务请求。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

运行下方代码,拉取PaddleOCR以及安装PaddleOCR的依赖库。
import os
import sys# 下载代码os.chdir("/home/aistudio/work/")
!git clone https://gitee.com/paddlepaddle/PaddleOCR.git# 切换工作目录os.chdir("/home/aistudio/PaddleOCR/")# 安装依赖!pip install -U pip
!pip install -r requirements.txt# 创建文件夹!mkdir ~/work/detection !mkdir ~/work/recognition# 复制和解压检测数据!cp ~/data/data124015/train.txt ~/work/detection !cp ~/data/data124015/test.txt ~/work/detection !tar xf ~/data/data124014/imgs.tar -C ~/work/detection# 复制和解压识别数据!cp ~/data/data124014/train.txt ~/work/recognition !cp ~/data/data124014/test.txt ~/work/recognition !cp ~/data/data124014/hindi.txt ~/work/recognition !tar xf ~/data/data124014/train_img.tar -C ~/work/recognition !tar xf ~/data/data124014/test_img.tar -C ~/work/recognition
为了加速训练,采用ppocr的原始超轻量模型。运行下方代码准备预训练模型。
import os
os.chdir("/home/aistudio/work/PaddleOCR/")# 创建预训练模型目录!mkdir pretrain_models
os.chdir("/home/aistudio/work/PaddleOCR/pretrain_models")# 下载并解压预训练模型!wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar && tar xf ch_ppocr_mobile_v2.0_det_train.tar先修改./configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml配置文件,主要包括预训练模型路径、数据集路径两部分,此外还有模型验证步数、训练图像尺寸改变、验证图像尺寸改变等。(本项目中配置文件已修改)
Global:
  └─save_model_dir: ./output/ch_db_mv3_original/
  └─eval_batch_step: [0, 18]
  └─pretrained_model: ./pretrain_models/ch_ppocr_mobile_v2.0_det_train/best_accuracy
Train:
  └─dataset
	└─data_dir: /home/aistudio/work/detection/imgs
	└─label_file_list: /home/aistudio/work/detection/train.txt
    └─transforms:
      └─EastRandomCropData:
        └─size: [640, 640]  # 改小尺寸加快训练Eval:
  └─dataset
    └─data_dir:/home/aistudio/work/detection/imgs
	└─label_file_list: /home/aistudio/work/detection/test.txt
    └─transforms:
      └─DetResizeForTest:
        └─image_shape: [1280, 736]  # 图像大多是竖着的,因此改成高>宽然后运行下方代码启动训练。
!python3 tools/train.py -c ./configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml
模型调优采用自蒸馏算法,修改./configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_dml.yml配置文件,学生1加载2.2训练好的模型,学生2加载预训练模型,其余配置跟2.2保持一致。
Global:
  └─save_model_dir: ./output/ch_db_mv3_dml/
  └─eval_batch_step: [0, 36]
Architecture:
  └─Models:
    └─Student:
      └─pretrained: ./output/ch_db_mv3_original/best_accuracy
    └─Student2:
      └─pretrained: ./pretrain_models/ch_ppocr_mobile_v2.0_det_train/best_accuracy运行下方代码启动训练
!python3 tools/train.py -c ./configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_dml.yml
分别测试预训练模型、微调后模型和调优后模型的Precision、Recall、H-mean(F-Score)指标。
# 原始模型!python3 tools/eval.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.checkpoints="./pretrain_models/ch_ppocr_mobile_v2.0_det_train/best_accuracy"# Finetune后模型!python3 tools/eval.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.checkpoints="./output/ch_db_mv3_original/best_accuracy"# 调优后模型!python3 tools/eval.py -c configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_dml.yml -o Global.checkpoints="./output/ch_db_mv3_dml/best_accuracy"
获得结果如下,经过finetune后的模型在综合指标H-mean上比原先提升15%左右,经过蒸馏调优后能再提升0.2%左右。
| Model | Precision | Recall | H-mean | 
|---|---|---|---|
| PP-OCR mobile | 0.6996 | 0.8451 | 0.7655 | 
| PP-OCR mobile finetune | 0.9048 | 0.9248 | 0.9147 | 
| PP-OCR mobile distill | 0.9087 | 0.9248 | 0.9167 | 
为了加速训练,采用ppocr的梵文预训练模型来加速训练。运行下方代码准备预训练模型。
import os
os.chdir("/home/aistudio/work/PaddleOCR/pretrain_models")# 下载并解压预训练模型!wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_train.tar && tar xf devanagari_ppocr_mobile_v2.0_rec_train.tar先修改./configs/rec/multi_language/rec_devanagari_lite_train.yml配置文件,主要包括预训练模型路径、数据集路径等。(本项目中配置文件已修改)
Global:
  └─save_model_dir: ./output/rec_hindi_en
  └─eval_batch_step: [0, 120]
  └─save_epoch_step: 30
  └─pretrained_model: ./pretrain_models/ch_ppocr_mobile_v2.0_det_train/best_accuracy
  └─character_dict_path: /home/aistudio/work/recognition/hindi.txt
  └─max_text_length: 70
  └─use_space_char: falseTrain:
  └─dataset
	└─data_dir: /home/aistudio/work/recognition/TrainImages
	└─label_file_list: /home/aistudio/work/recognition/train.txt
    └─transforms:
      └─RecAug:
        └─use_tia: false  # 不使用tia增强
Eval:
  └─dataset
    └─data_dir: /home/aistudio/work/recognition/TestImages
	└─label_file_list: /home/aistudio/work/recognition/test.txt然后运行下方代码启动训练。
!python3 tools/train.py -c ./configs/rec/multi_language/rec_devanagari_lite_train.yml
模型调优采用enhanced_ctc算法,增加./configs/rec/multi_language/rec_devanagari_lite_enhanced_ctc.yml配置文件,需要修改的地方如下,其余配置跟3.2保持一致。
Global:
  └─save_model_dir: ./output/rec_hindi_en_enhanced_ctc
  └─pretrained_model: ./output/rec_hindi_en/best_accuracy
  
Architecture:
  └─Head:
    └─return_feats: true
Loss:
  └─name: CombinedLoss
  └─loss_config_list:
    └─CTCLoss:
      └─use_focal_loss: false
      └─weight: 1.0
    └─CenterLoss:
      └─weight: 0.05
      └─num_classes: 176
      └─feat_dim: 96
      └─center_file_path: ./train_center.pkl采用这种方法需要先生成center文件,运行下面代码生成train_center.pkl文件
!python tools/export_center.py -c ./configs/rec/multi_language/rec_devanagari_lite_train.yml -o Global.pretrained_model="./output/rec_hindi_en/best_accuracy"
运行下方代码启动训练
!python3 tools/train.py -c ./configs/rec/multi_language/rec_devanagari_lite_enhanced_ctc.yml
分别测试微调后模型和调优后模型的Accuracy指标。
# Finetune后模型!python3 tools/eval.py -c configs/rec/multi_language/rec_devanagari_lite_train.yml -o Global.checkpoints="./output/rec_hindi_en/best_accuracy"# 调优后模型!python3 tools/eval.py -c configs/rec/multi_language/rec_devanagari_lite_enhanced_ctc.yml -o Global.checkpoints="./output/rec_hindi_en_enhanced_ctc/best_accuracy"
获得结果如下,经过调优后性能提升2%左右。
| Model | Accuracy | 
|---|---|
| PP-OCR mobile finetune | 0.5000 | 
| PP-OCR mobile enhanced_ctc | 0.5217 | 
这里使用Paddle Serving套件进行部署。
# 转检测模型 !python tools/export_model.py -c configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_dml.yml -o Global.checkpoints="./output/ch_db_mv3_dml/best_accuracy" Global.save_inference_dir="./det_model"# 转识别模型 !python tools/export_model.py -c configs/rec/multi_language/rec_devanagari_lite_enhanced_ctc.yml -o Global.checkpoints="./output/rec_hindi_en_enhanced_ctc/best_accuracy" Global.save_inference_dir="./rec_model"
显示印地语需要专门的字体文件,该字体文件已传到"/home/aistudio/work/PaddleOCR/StyleText/fonts/hindi.ttf"上。运行下方命令可获得可视化效果。
import osimport cv2import matplotlib.pyplot as plt# 进入PaddleOCR目录os.chdir("/home/aistudio/work/PaddleOCR/")# 运行推断程序!python tools/infer/predict_system.py \
    --image_dir="/home/aistudio/work/detection/imgs/Google_0063.jpeg" \
    --det_model_dir="./det_model/Student/" \
    --rec_model_dir="./rec_model/" \
    --rec_char_dict_path="/home/aistudio/work/recognition/hindi.txt" \
    --use_space_char=False \
    --vis_font_path="/home/aistudio/work/PaddleOCR/StyleText/fonts/hindi.ttf"# 展示推断结果img = cv2.imread("/home/aistudio/work/PaddleOCR/inference_results/Google_0063.jpeg")
plt.figure(figsize=(30, 10))
plt.imshow(img[..., ::-1])
plt.show()[2022/01/06 16:23:53] root DEBUG: dt_boxes num : 6, elapse : 2.748750925064087 [2022/01/06 16:23:53] root DEBUG: rec_res num : 6, elapse : 0.018050670623779297 [2022/01/06 16:23:53] root DEBUG: 0 Predict time of /home/aistudio/work/detection/imgs/Google_0063.jpeg: 2.771s [2022/01/06 16:23:53] root DEBUG: बी ए समेस्टर- I पीयाू, 0.895 [2022/01/06 16:23:53] root DEBUG: प्राचीन भारत, 0.945 [2022/01/06 16:23:53] root DEBUG: का, 0.822 [2022/01/06 16:23:53] root DEBUG: इतिहास, 1.000 [2022/01/06 16:23:53] root DEBUG: Jizooड़े-तक, 0.812 [2022/01/06 16:23:53] root DEBUG: डाँ क्रांति कमार गुप्ता l डोँ मोइरंगथम प्रमोद, 0.958 [2022/01/06 16:23:53] root DEBUG: The visualized image saved in ./inference_results/Google_0063.jpeg [2022/01/06 16:23:53] root INFO: The predict total time is 2.813556432723999
<Figure size 2160x720 with 1 Axes>
运行Paddle Serving,需要安装Paddle Serving三个安装包:paddle-serving-server、paddle-serving-client 和 paddle-serving-app,命令如下。
!wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl !pip install paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl !wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.7.0-cp37-none-any.whl !pip install paddle_serving_client-0.7.0-cp37-none-any.whl !wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.7.0-py3-none-any.whl !pip install paddle_serving_app-0.7.0-py3-none-any.whl !rm ./*.whl
运行下方代码将inference模型转换成serving模型
# 转换检测模型!python -m paddle_serving_client.convert --dirname ./det_model/ \ --model_filename inference.pdmodel \ --params_filename inference.pdiparams \ --serving_server ./det_serving/ \ --serving_client ./det_client/# 转换识别模型!python -m paddle_serving_client.convert --dirname ./rec_model/ \ --model_filename inference.pdmodel \ --params_filename inference.pdiparams \ --serving_server ./rec_serving/ \ --serving_client ./rec_client/
op:
  └─det:
    └─local_service_conf:
      └─model_config: /home/aistudio/work/PaddleOCR/det_serving
  └─rec:
    └─local_service_conf:
      └─model_config: /home/aistudio/work/PaddleOCR/rec_servingclass RecOp(Op):
    def init_op(self):
        self.ocr_reader = OCRReader(
            char_dict_path="/home/aistudio/work/recognition/hindi.txt")cd PaddleOCR/deploy/pdserving/python web_service.py
效果如下图。 
        
cd PaddleOCR/deploy/pdserving/ python pipeline_http_client.py --image_dir "/home/aistudio/work/detection/imgs"
效果如下图 
        
以上就是印地语-英语OCR的详细内容,更多请关注php中文网其它相关文章!
 
                        
                        每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
 
                Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号