基于分割网络Unet生成虚拟图像

P粉084495128
发布: 2025-07-22 17:23:20
原创
733人浏览过
本文基于Unet分割网络,利用49例头部磁共振T1、T2数据,通过配准使二者解剖位置一致,转换数据格式并裁剪窗宽窗位,构建数据集。以T1为输入、T2为标签训练Unet进行回归,用SSIM评估,经200轮训练,最佳SSIM达0.571,实现由T1生成虚拟T2图像。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

基于分割网络unet生成虚拟图像 - php中文网

基于分割网络Unet生成虚拟图像

这个想法是基于

[1]高留刚, 李春迎, 陆正大,等. 基于卷积神经网络生成虚拟平扫CT图像[J]. 中国医学影像技术, 2022, 38(3):5.

【1】文章使用Unet对增强CT数据进行训练,最终预测生成对应的虚拟平扫CT图像,达到只需要对患者扫描一次CT即可,避免患者接受过多的放射辐射。基于分割网络Unet生成虚拟图像 - php中文网

【2】因为本项目没有对应的CT数据,刚好有一个T1、T2磁共振头部公开数据,先磁共振数据进行配准,然后输入T1模态的数据到Unet中然后生成对应的T2模态数据。基于分割网络Unet生成虚拟图像 - php中文网

1. 数据

数量:49例

模态和部位:磁共振的T1和T2头部数据 基于分割网络Unet生成虚拟图像 - php中文网

In [ ]
#解压数据!unzip -o /home/aistudio/data/data146796/mydata.zip -d /home/aistudio/work
登录后复制
In [ ]
#antspyx 是一个配准工具包,SImpleITK处理医学数据!pip install antspyx SimpleITK
登录后复制
In [ ]
import osimport antsimport SimpleITK as sitkfrom tqdm import tqdmimport numpy as npimport randomimport matplotlib.pyplot as pltimport paddleimport cv2
登录后复制

2. 对数据进行配准

项是利用 Unet对像素数值进行回归预测。所以在进入网路之前,除了像素值的尺寸不同之外,原资料与标记资料的解剖学位置应当是相同的。因此,必须将原始资料与标签资料进行匹配,使二者重新整合。比如下面这张图片,T1有256层,T2有136层,显然是解剖位置不对,然后经过配准后的T2有256层,和T1层的解剖学位置一模一样。对齐后的数据可以作为标记输入到网络中。基于分割网络Unet生成虚拟图像 - php中文网

讯飞智作-虚拟主播
讯飞智作-虚拟主播

讯飞智作是一款集AI配音、虚拟人视频生成、PPT生成视频、虚拟人定制等多功能的AI音视频生产平台。已广泛应用于媒体、教育、短视频等领域。

讯飞智作-虚拟主播 6
查看详情 讯飞智作-虚拟主播
In [ ]
#因为配准花费的时间太久太久了,本项目的数据已经包含好了配准后的数据。#因此不用运行此代码path  = '/home/aistudio/work/mydata/IXI-T1'for f in tqdm(os.listdir(path)):
    f_path = os.path.join(path,f)
    m_path = os.path.join('/home/aistudio/work/mydata/IXI-T2',f.replace('T1','T2'))
    f_img = ants.image_read(f_path)
    m_img = ants.image_read(m_path)
    mytx = ants.registration(fixed=f_img, moving=m_img, type_of_transform='SyN')    # 将形变场作用于moving图像,得到配准后的图像
    warped_img = ants.apply_transforms(fixed=f_img, moving=m_img, transformlist=mytx['fwdtransforms'],
                                    interpolator="linear")    # 将配准后图像的direction/origin/spacing和原图保持一致
    warped_img.set_direction(f_img.direction)
    warped_img.set_origin(f_img.origin)
    warped_img.set_spacing(f_img.spacing)
    img_name = '/home/aistudio/work/mydata/IXI-T2-warped/'+ f.replace('T1','Warped')    # ants.image_write(warped_img, img_name)print("End")
登录后复制

3. 转换数据形式

原始数据格式是NIFIT,是属于医疗数据格式的一种。把NIFIT数据转换成numpy,并对窗宽窗位进行裁剪到0~255。并生成txt文档,用作构建DataSet使用。

In [ ]
random.seed(2022)
save_path = '/home/aistudio/work/npdata'save_origin_path = "/home/aistudio/work/npdata/origin/"save_label_path =  "/home/aistudio/work/npdata/label/"if not os.path.exists(save_path):
    os.mkdir(save_path)
    os.mkdir(save_origin_path)
    os.mkdir(save_label_path)
origin_data = '/home/aistudio/work/mydata/IXI-T1'f_list = os.listdir(origin_data)
random.shuffle(f_list)
split = int(len(f_list)*0.9)
t_f_list = f_list[:split]
v_f_list = f_list[split:]def gen_txt(f_list,name):
    txt = open( os.path.join(save_path,name),'w')    for f in f_list:        if '.ipynb_checkpoints' in f:            continue
        f_path = os.path.join(origin_data,f)
        tag_path = os.path.join(origin_data.replace('T1','T2-warped'),f.replace('T1','Warped'))
        f_sitkData = sitk.ReadImage(f_path)
        tag_sitkData = sitk.ReadImage(tag_path)
        f_npData = sitk.GetArrayFromImage(f_sitkData)
        tag_npData = sitk.GetArrayFromImage(tag_sitkData)
        f.split('-')[0]        for i in range(100,200):
            f_slice = np.rot90(f_npData[:,i,:],-1)
            tag_slice = np.rot90(tag_npData[:,i,:],-1)

            f_slice = (f_slice - 0) / ((835 - 0) / 255)
            np.clip(f_slice, 0, 255, out=f_slice)
            tag_slice = (tag_slice - 0) / ((626 - 0) / 255)
            np.clip(tag_slice, 0, 255, out=tag_slice)
            
            f_save_path = save_origin_path+f.split('-')[0]+'_'+str(i) +'.npy'
            tag_save_path = save_label_path+f.split('-')[0]+'_'+str(i) +'.npy'
            np.save(f_save_path,f_slice)
            np.save(tag_save_path,tag_slice)
            txt.write(f_save_path + ' ' + tag_save_path+ '\n')
    txt.close()
gen_txt(t_f_list,name='train.txt')
gen_txt(v_f_list,name='val.txt')print('完成')
登录后复制

4. 构建Dataset

数据增强只采用 缩放到256x256。

In [4]
from paddle.io import Dataset, DataLoaderfrom paddle.vision.transforms import Resizeclass MyDataset(Dataset):
    def __init__(self, data_dir, txt_path, transform=None):
        super(MyDataset, self).__init__()
        self.data_list = []        with open(txt_path,encoding='utf-8') as f:            for line in f.readlines():
                image_path, label_path = line.split(' ')
                image_path = image_path.strip()
                label_path = label_path.strip()
                image_path = os.path.join(data_dir, image_path)
                label_path = os.path.join(data_dir,label_path)
                self.data_list.append([image_path, label_path])
        self.transform = transform    def __getitem__(self, index):
        image_path, label_path = self.data_list[index]
        image = np.load(image_path)
        label = np.load(label_path)        if self.transform is not None:
            image = self.transform(image)
            label = self.transform(label)
        
        image = image[np.newaxis,:].astype('float32')
        label = label[np.newaxis,:].astype('float32')        return image, label    def __len__(self):
        return len(self.data_list)

BatchSize = 24transform = Resize(size=(256,256))
t_dataset = MyDataset('/home/aistudio','work/npdata/train.txt',transform=transform)
v_dataset = MyDataset('/home/aistudio','work/npdata/val.txt',transform=transform)
train_loader = DataLoader(t_dataset,batch_size=BatchSize)  
val_loader = DataLoader(v_dataset,batch_size=BatchSize)
登录后复制

5. 评价指标 SSIM

SSIM (Structure Similarity Index Measure) 结构衡量指标

结构相似指标可以衡量图片的失真程度,也可以衡量两张图片的相似程度,SSIM指标感知模型,即更符合人眼的直观感受。SSIM 主要考量图片的三个关键特征:亮度(Luminance), 对比度(Contrast), 结构 (Structure)。SSIM取值约接近1,两张图片的相似度约接近。两张图片一模一样,SSIM=1

参考文章 https://zhuanlan.zhihu.com/p/399215180

In [6]
def ssim(img1, img2):
  C1 = (0.01 * 255)**2
  C2 = (0.03 * 255)**2
  img1 = img1.astype(np.float64)
  img2 = img2.astype(np.float64)
  kernel = cv2.getGaussianKernel(11, 1.5)
  window = np.outer(kernel, kernel.transpose())
  mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
  mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
  mu1_sq = mu1**2
  mu2_sq = mu2**2
  mu1_mu2 = mu1 * mu2
  sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
  sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
  sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
  ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
                              (sigma1_sq + sigma2_sq + C2))  return ssim_map.mean()def calculate_ssim(img1, img2):
  if not img1.shape == img2.shape:    raise ValueError('Input images must have the same dimensions.')  if img1.ndim == 2:    return ssim(img1, img2)  elif img1.ndim == 3:    if img1.shape[2] == 3:
      ssims = []      for i in range(3):
        ssims.append(ssim(img1, img2))      return np.array(ssims).mean()    elif img1.shape[2] == 1:      return ssim(np.squeeze(img1), np.squeeze(img2))  else:    raise ValueError('Wrong input image dimensions.')for data in t_dataset:
    img1,img2 = data
    plt.figure(figsize=(10,6))
    plt.subplot(1,2,1)
    plt.imshow(np.squeeze(img1),'gray')
    plt.title("T1 mode")
    plt.subplot(1,2,2)
    plt.imshow(np.squeeze(img2),'gray')
    plt.title("T2 mode")    print(f'SSIM:{calculate_ssim(np.squeeze(img1),np.squeeze(img2))}')    break
登录后复制
SSIM:0.4927141870957079
登录后复制
<Figure size 720x432 with 2 Axes>
登录后复制

6. 导入Unet模型,开始训练

Unet网络是一种语义分割网络,输入原始图像和对应的标签Mask图像到Unet网络中进行分割,最终输出和标签Mask一致的图像。实际也是对像素值进行分类。把原始图像中的像素值进行分类,到底是属于Mask图像中像素值0,还是像素值1等等。这里是使用Unet网络进行回归,因此网络输出的类别是1。基于分割网络Unet生成虚拟图像 - php中文网

In [8]
from model.unet import UNet
img = paddle.rand([2, 1, 256, 256])
model = UNet()
out = model(paddle.rand([2, 1, 256, 256]))print(out.shape)
登录后复制
[2, 1, 256, 256]
登录后复制
In [9]
def evaluation(model,val_dataset):
    """验证"""
    model.eval()
    ssims = []    for data in val_dataset:
        image,label = data
        image = image[np.newaxis,:].astype('float32')
        image = paddle.to_tensor(image)
        pre = model(image).numpy()
        pre = np.squeeze(pre).astype('int32')
        ssims.append(calculate_ssim(np.squeeze(label.astype('int32')),pre))    return np.array(ssims).mean()def train(model,epochs):
    if not os.path.exists('/home/aistudio/save_model'):
        os.mkdir('/home/aistudio/save_model')
    steps = int(len(t_dataset)/BatchSize) * epochs
    best_ssim = 0 #记录最优的ssim得分
    model.train()
    scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.05, decay_steps=steps, verbose=False)
    opt = paddle.optimizer.Adam(learning_rate=scheduler, parameters=model.parameters())    
    for epoch_id in range(epochs):        for batch_id, data in enumerate(train_loader()):
            images, labels = data
            images = paddle.to_tensor(images)
            labels = paddle.to_tensor(labels)
            predicts = model(images)
            mse_loss = paddle.nn.MSELoss()
            l1_loss = paddle.nn.L1Loss()
            loss = mse_loss(predicts, labels)+l1_loss(predicts,labels)            if batch_id % 200 == 0:                print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, loss.numpy()))
            loss.backward()
            opt.step()
            opt.clear_grad()        #训练过程中,保存模型参数
        if epoch_id % 10 == 0:
            paddle.save(model.state_dict(), '/home/aistudio/save_model/'+str(epoch_id)+'model.pdparams')
            
            model.eval()            #训练过程中,预览效果,输入T1图片,预测t2图片
            data = t_dataset[150]
            img,label = data            input = img[np.newaxis,:].astype('float32')            input = paddle.to_tensor(input)
            pre = model(input).numpy()
            pre = np.squeeze(pre)

            plt.figure(figsize=(12,6))
            plt.subplot(1,3,1)
            plt.imshow(np.squeeze(img),'gray')
            plt.title("input: T1 mode")
            plt.subplot(1,3,2)
            plt.imshow(np.squeeze(label),'gray')
            plt.title("target:T2 mode")
            plt.subplot(1,3,3)
            plt.imshow(pre,'gray')
            plt.title("pre: T2 mode")
            plt.show()

            v_ssim_mean = evaluation(model, v_dataset)            if v_ssim_mean > best_ssim:
                paddle.save(model.state_dict(), '/home/aistudio/save_model/best_model.pdparams')
                best_ssim = v_ssim_mean
            model.train()            print(f'val_SSIM: {v_ssim_mean},Best_SSIM:{best_ssim}')   
    
#启动训练过程train(model,epochs= 200)
登录后复制
epoch: 0, batch: 0, loss is: [7316.7188]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.39978080604275146,Best_SSIM:0.39978080604275146
epoch: 1, batch: 0, loss is: [2628.9192]
epoch: 2, batch: 0, loss is: [2724.6853]
epoch: 3, batch: 0, loss is: [2688.8508]
epoch: 4, batch: 0, loss is: [2686.88]
epoch: 5, batch: 0, loss is: [2608.186]
epoch: 6, batch: 0, loss is: [2520.5952]
epoch: 7, batch: 0, loss is: [2692.3694]
epoch: 8, batch: 0, loss is: [2702.1028]
epoch: 9, batch: 0, loss is: [2628.6016]
epoch: 10, batch: 0, loss is: [2485.4382]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.4802982366278921,Best_SSIM:0.4802982366278921
epoch: 11, batch: 0, loss is: [2507.683]
epoch: 12, batch: 0, loss is: [2434.3452]
epoch: 13, batch: 0, loss is: [2408.262]
epoch: 14, batch: 0, loss is: [2332.7097]
epoch: 15, batch: 0, loss is: [2270.0247]
epoch: 16, batch: 0, loss is: [2179.795]
epoch: 17, batch: 0, loss is: [2138.3933]
epoch: 18, batch: 0, loss is: [2093.4106]
epoch: 19, batch: 0, loss is: [1887.1506]
epoch: 20, batch: 0, loss is: [2024.5569]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.49954443953370115,Best_SSIM:0.49954443953370115
epoch: 21, batch: 0, loss is: [1973.8619]
epoch: 22, batch: 0, loss is: [1956.6097]
epoch: 23, batch: 0, loss is: [1909.3981]
epoch: 24, batch: 0, loss is: [1875.7285]
epoch: 25, batch: 0, loss is: [1837.553]
epoch: 26, batch: 0, loss is: [1812.5168]
epoch: 27, batch: 0, loss is: [1785.5492]
epoch: 28, batch: 0, loss is: [1774.7295]
epoch: 29, batch: 0, loss is: [1752.758]
epoch: 30, batch: 0, loss is: [1756.8203]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.5426780015544808,Best_SSIM:0.5426780015544808
epoch: 31, batch: 0, loss is: [1735.7894]
epoch: 32, batch: 0, loss is: [1827.0814]
epoch: 33, batch: 0, loss is: [1753.9219]
epoch: 34, batch: 0, loss is: [1779.7365]
epoch: 35, batch: 0, loss is: [1752.4994]
epoch: 36, batch: 0, loss is: [1747.4668]
epoch: 37, batch: 0, loss is: [1735.7844]
epoch: 38, batch: 0, loss is: [1769.8733]
epoch: 39, batch: 0, loss is: [1759.1631]
epoch: 40, batch: 0, loss is: [1630.8364]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.4373114577520071,Best_SSIM:0.5426780015544808
epoch: 41, batch: 0, loss is: [1611.3628]
epoch: 42, batch: 0, loss is: [1715.6615]
epoch: 43, batch: 0, loss is: [1763.4269]
epoch: 44, batch: 0, loss is: [1737.9359]
epoch: 45, batch: 0, loss is: [1772.5739]
epoch: 46, batch: 0, loss is: [1738.1847]
epoch: 47, batch: 0, loss is: [1775.006]
epoch: 48, batch: 0, loss is: [1911.8531]
epoch: 49, batch: 0, loss is: [2033.4453]
epoch: 50, batch: 0, loss is: [1987.3456]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.5579299673856584,Best_SSIM:0.5579299673856584
epoch: 51, batch: 0, loss is: [1836.5175]
epoch: 52, batch: 0, loss is: [1861.1411]
epoch: 53, batch: 0, loss is: [1845.1718]
epoch: 54, batch: 0, loss is: [1740.5963]
epoch: 55, batch: 0, loss is: [1660.3125]
epoch: 56, batch: 0, loss is: [1726.9702]
epoch: 57, batch: 0, loss is: [1635.8535]
epoch: 58, batch: 0, loss is: [1610.6799]
epoch: 59, batch: 0, loss is: [1568.5394]
epoch: 60, batch: 0, loss is: [1617.876]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.5634165131362056,Best_SSIM:0.5634165131362056
epoch: 61, batch: 0, loss is: [1561.1827]
epoch: 62, batch: 0, loss is: [1597.7261]
epoch: 63, batch: 0, loss is: [1525.599]
epoch: 64, batch: 0, loss is: [1548.1874]
epoch: 65, batch: 0, loss is: [1488.4364]
epoch: 66, batch: 0, loss is: [1513.0366]
epoch: 67, batch: 0, loss is: [1505.5546]
epoch: 68, batch: 0, loss is: [1516.5098]
epoch: 69, batch: 0, loss is: [1467.4851]
epoch: 70, batch: 0, loss is: [1585.8317]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.5709971328311436,Best_SSIM:0.5709971328311436
epoch: 71, batch: 0, loss is: [1457.6887]
epoch: 72, batch: 0, loss is: [1467.6174]
epoch: 73, batch: 0, loss is: [1471.8882]
epoch: 74, batch: 0, loss is: [1459.0536]
epoch: 75, batch: 0, loss is: [1458.9404]
epoch: 76, batch: 0, loss is: [1634.24]
epoch: 77, batch: 0, loss is: [1650.2292]
epoch: 78, batch: 0, loss is: [1437.5302]
epoch: 79, batch: 0, loss is: [1421.7593]
epoch: 80, batch: 0, loss is: [1413.1609]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.5701560896501561,Best_SSIM:0.5709971328311436
epoch: 81, batch: 0, loss is: [1409.3071]
epoch: 82, batch: 0, loss is: [1404.0553]
epoch: 83, batch: 0, loss is: [1420.5449]
epoch: 84, batch: 0, loss is: [1398.2864]
epoch: 85, batch: 0, loss is: [1488.5781]
epoch: 86, batch: 0, loss is: [1401.356]
epoch: 87, batch: 0, loss is: [1410.7175]
epoch: 88, batch: 0, loss is: [1500.6272]
epoch: 89, batch: 0, loss is: [1416.3497]
epoch: 90, batch: 0, loss is: [1380.4263]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.5465621052241267,Best_SSIM:0.5709971328311436
epoch: 91, batch: 0, loss is: [1372.7605]
epoch: 92, batch: 0, loss is: [1367.5848]
epoch: 93, batch: 0, loss is: [1376.7378]
epoch: 94, batch: 0, loss is: [1370.2089]
epoch: 95, batch: 0, loss is: [1365.8433]
epoch: 96, batch: 0, loss is: [1369.1512]
epoch: 97, batch: 0, loss is: [1369.3212]
epoch: 98, batch: 0, loss is: [1404.3115]
epoch: 99, batch: 0, loss is: [1354.4286]
epoch: 100, batch: 0, loss is: [1382.9532]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.5378666148453135,Best_SSIM:0.5709971328311436
epoch: 101, batch: 0, loss is: [1387.7471]
epoch: 102, batch: 0, loss is: [1424.3396]
epoch: 103, batch: 0, loss is: [1349.6024]
epoch: 104, batch: 0, loss is: [1366.5181]
epoch: 105, batch: 0, loss is: [1352.3512]
epoch: 106, batch: 0, loss is: [1353.1865]
epoch: 107, batch: 0, loss is: [1352.0631]
epoch: 108, batch: 0, loss is: [1343.2163]
epoch: 109, batch: 0, loss is: [1345.3413]
epoch: 110, batch: 0, loss is: [1346.6847]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.5586893791021966,Best_SSIM:0.5709971328311436
epoch: 111, batch: 0, loss is: [1343.9454]
epoch: 112, batch: 0, loss is: [1349.0774]
epoch: 113, batch: 0, loss is: [1337.5864]
epoch: 114, batch: 0, loss is: [1429.8538]
epoch: 115, batch: 0, loss is: [1349.8104]
epoch: 116, batch: 0, loss is: [1335.1368]
epoch: 117, batch: 0, loss is: [1337.9221]
epoch: 118, batch: 0, loss is: [1352.1951]
epoch: 119, batch: 0, loss is: [1347.4542]
epoch: 120, batch: 0, loss is: [1336.236]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.4977443843057142,Best_SSIM:0.5709971328311436
epoch: 121, batch: 0, loss is: [1341.1677]
epoch: 122, batch: 0, loss is: [1325.7648]
epoch: 123, batch: 0, loss is: [1322.5]
epoch: 124, batch: 0, loss is: [1322.8683]
epoch: 125, batch: 0, loss is: [1319.6675]
epoch: 126, batch: 0, loss is: [1319.3303]
epoch: 127, batch: 0, loss is: [1320.0753]
epoch: 128, batch: 0, loss is: [1316.222]
epoch: 129, batch: 0, loss is: [1336.7915]
epoch: 130, batch: 0, loss is: [1321.2736]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.47030362428033146,Best_SSIM:0.5709971328311436
epoch: 131, batch: 0, loss is: [1339.2891]
epoch: 132, batch: 0, loss is: [1318.2183]
epoch: 133, batch: 0, loss is: [1325.5737]
epoch: 134, batch: 0, loss is: [1308.886]
epoch: 135, batch: 0, loss is: [1298.8752]
epoch: 136, batch: 0, loss is: [1302.0266]
epoch: 137, batch: 0, loss is: [1279.0824]
epoch: 138, batch: 0, loss is: [1313.5026]
epoch: 139, batch: 0, loss is: [1317.8335]
epoch: 140, batch: 0, loss is: [1325.1211]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.5129117285623543,Best_SSIM:0.5709971328311436
epoch: 141, batch: 0, loss is: [1307.1959]
epoch: 142, batch: 0, loss is: [1312.2686]
epoch: 143, batch: 0, loss is: [1320.1404]
epoch: 144, batch: 0, loss is: [1326.3783]
epoch: 145, batch: 0, loss is: [1308.4757]
epoch: 146, batch: 0, loss is: [1318.8088]
epoch: 147, batch: 0, loss is: [1297.8518]
epoch: 148, batch: 0, loss is: [1296.301]
epoch: 149, batch: 0, loss is: [1301.2318]
epoch: 150, batch: 0, loss is: [1290.0143]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.4650640222375466,Best_SSIM:0.5709971328311436
epoch: 151, batch: 0, loss is: [1320.3531]
epoch: 152, batch: 0, loss is: [1311.9688]
epoch: 153, batch: 0, loss is: [1302.6729]
epoch: 154, batch: 0, loss is: [1302.4635]
epoch: 155, batch: 0, loss is: [1286.9762]
epoch: 156, batch: 0, loss is: [1284.86]
epoch: 157, batch: 0, loss is: [1290.937]
epoch: 158, batch: 0, loss is: [1274.3252]
epoch: 159, batch: 0, loss is: [1280.6571]
epoch: 160, batch: 0, loss is: [1286.4685]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.4561319579342975,Best_SSIM:0.5709971328311436
epoch: 161, batch: 0, loss is: [1270.9604]
epoch: 162, batch: 0, loss is: [1287.5771]
epoch: 163, batch: 0, loss is: [1269.8563]
epoch: 164, batch: 0, loss is: [1286.9226]
epoch: 165, batch: 0, loss is: [1272.0933]
epoch: 166, batch: 0, loss is: [1274.8392]
epoch: 167, batch: 0, loss is: [1272.4178]
epoch: 168, batch: 0, loss is: [1266.7671]
epoch: 169, batch: 0, loss is: [1282.4298]
epoch: 170, batch: 0, loss is: [1247.015]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.49646587443554935,Best_SSIM:0.5709971328311436
epoch: 171, batch: 0, loss is: [1250.8077]
epoch: 172, batch: 0, loss is: [1287.3835]
epoch: 173, batch: 0, loss is: [1248.3782]
epoch: 174, batch: 0, loss is: [1249.7322]
epoch: 175, batch: 0, loss is: [1273.4828]
epoch: 176, batch: 0, loss is: [1253.0632]
epoch: 177, batch: 0, loss is: [1281.6831]
epoch: 178, batch: 0, loss is: [1280.6669]
epoch: 179, batch: 0, loss is: [1245.0092]
epoch: 180, batch: 0, loss is: [1257.4398]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.46512517332255776,Best_SSIM:0.5709971328311436
epoch: 181, batch: 0, loss is: [1242.4584]
epoch: 182, batch: 0, loss is: [1254.164]
epoch: 183, batch: 0, loss is: [1238.1926]
epoch: 184, batch: 0, loss is: [1243.1198]
epoch: 185, batch: 0, loss is: [1248.0677]
epoch: 186, batch: 0, loss is: [1240.6064]
epoch: 187, batch: 0, loss is: [1252.3843]
epoch: 188, batch: 0, loss is: [1230.179]
epoch: 189, batch: 0, loss is: [1237.1627]
epoch: 190, batch: 0, loss is: [1232.43]
登录后复制
<Figure size 864x432 with 3 Axes>
登录后复制
val_SSIM: 0.4939679476601408,Best_SSIM:0.5709971328311436
epoch: 191, batch: 0, loss is: [1245.5471]
epoch: 192, batch: 0, loss is: [1255.1567]
epoch: 193, batch: 0, loss is: [1250.8704]
epoch: 194, batch: 0, loss is: [1223.4425]
epoch: 195, batch: 0, loss is: [1224.8658]
epoch: 196, batch: 0, loss is: [1230.7142]
epoch: 197, batch: 0, loss is: [1229.7573]
epoch: 198, batch: 0, loss is: [1235.9465]
epoch: 199, batch: 0, loss is: [1225.0635]
登录后复制

以上就是基于分割网络Unet生成虚拟图像的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号