Tic-Tac-Toe:井字游戏(井字棋)

P粉084495128
发布: 2025-07-24 11:31:41
原创
395人浏览过
本文介绍了井字游戏变种方案,可通过设置xsize、ysize指定棋盘大小,winnum指定连珠数。用两个深度学习模型分别扮演玩家和电脑自动对弈,借QLearning记录每步,依胜负判定方案好坏。代码展示了模型训练等过程,包括迭代、下棋、胜负判定及模型更新等。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

tic-tac-toe:井字游戏(井字棋) - php中文网

Tic-Tac-Toe:井字游戏(井字棋)

是一种在3x3格子上进行的连珠游戏,和五子棋比较类似,由于棋盘一般不画边框,格线排成井字故得名。游戏需要的工具仅为纸和笔,然后由分别代表O和X的两个游戏者轮流在格子里留下标记(一般来说先手者为X)。由最先在任意一条直线上成功连接三个标记的一方获胜。

Tic-Tac-Toe:井字游戏(井字棋) - php中文网    

方案介绍

该方案为井字游戏的变种,可以通过设置xsize、ysize来指定棋盘大小,通过设置winnum来指定连珠数,每局结束的判定在VictoryRule.py文件中写明,QLearning.py文件是Q表格,用于记录电脑和玩家的每一步。

快转字幕
快转字幕

新一代 AI 字幕工作站,为创作者提供字幕制作、学习资源、会议记录、字幕制作等场景,一键为您的视频生成精准的字幕。

快转字幕 357
查看详情 快转字幕

方案设置了两个深度学习模型扮演玩家和电脑,双方自动下棋,根据最后获胜方来判别方案的好坏

代码实现

In [1]
import numpy as npimport paddlefrom Model import Modelfrom VictoryRule import Rulefrom QLearning import QLearningfrom visualdl import LogWriter
log_writer = LogWriter(logdir="./log")


Max_Epoch = 200           #最大迭代次数xsize = 3                 #多少行ysize = 3                 #多少列winnum = 3                #连珠数,多少个连珠则获胜learning_rate = 1e-3      #学习率decay_rate = 0.6          #每步衰减率player=1                  #玩家是数字,非0,非负computer=2                #电脑的数字,非0,非负remain = []               #地图中剩余可下棋子位置rule = Rule(xsize,ysize,winnum) #规则Qchart = QLearning(xsize * ysize,decay_rate)#Q表格player_model = Model(xsize * ysize,xsize * ysize)
player_model.train()
computer_model = Model(xsize * ysize,xsize * ysize)
computer_model.train()
player_optimizer = paddle.optimizer.SGD(parameters=player_model.parameters(),
                                  learning_rate=learning_rate)
computer_optimizer = paddle.optimizer.SGD(parameters=computer_model.parameters(),
                                  learning_rate=learning_rate)def restart():
    "重启环境"
    Qchart.clear()
    remain.clear()
    rule.map = np.zeros(xsize * ysize,dtype=int)    for i in range(xsize * ysize):
        remain.append(i)def modelupdate(player_loss,computer_loss):
    "模型更新"
    log_writer.add_scalar(tag="player/loss", step=epoch, value=player_loss.numpy())
    log_writer.add_scalar(tag="computer/loss", step=epoch, value=computer_loss.numpy())    # 梯度更新
    player_loss.backward()
    computer_loss.backward()
    player_optimizer.step()
    player_optimizer.clear_grad()
    computer_optimizer.step()
    computer_optimizer.clear_grad()
    paddle.save(player_model.state_dict(),'player_model')
    paddle.save(computer_model.state_dict(),'computer_model')    

for i in range(xsize * ysize):
    remain.append(i)for epoch in range(Max_Epoch):    while True:
        player_predict = player_model(paddle.to_tensor(rule.map, dtype='float32',stop_gradient=False))#玩家方预测
        for pred in np.argsort(-player_predict.numpy()):            if pred in remain:
                remain.remove(pred)                break
        rule.map[pred] = player
        Qchart.update(pred,'player')        print('player down at {}'.format(pred))
        overcode=rule.checkover(pred,player)        if overcode == player:            "获胜方为玩家"
            player_loss = paddle.nn.functional.mse_loss(player_predict, paddle.to_tensor(Qchart.playerstep, dtype='float32', stop_gradient=False))
            computer_loss = paddle.nn.functional.mse_loss(computer_predict, paddle.to_tensor(-1 * Qchart.computerstep, dtype='float32', stop_gradient=False))#损失计算中,失败方的label为每步的负数
            print("Player Victory!")            print(rule.map.reshape(xsize,ysize))            #print("epoch:{}\tplayer loss:{}\tcomputer loss:{}".format(epoch,player_loss.numpy()[0],computer_loss.numpy()[0]))
            modelupdate(player_loss,computer_loss)
            restart()            break
        elif overcode == 0:
            player_loss = paddle.nn.functional.mse_loss(player_predict, paddle.to_tensor(Qchart.playerstep, dtype='float32', stop_gradient=False))
            computer_loss = paddle.nn.functional.mse_loss(computer_predict, paddle.to_tensor(Qchart.computerstep, dtype='float32', stop_gradient=False))            print("Draw!")            print(rule.map.reshape(xsize,ysize))            #print("epoch:{}\tplayer loss:{}\tcomputer loss:{}".format(epoch,player_loss.numpy()[0],computer_loss.numpy()[0]))
            modelupdate(player_loss,computer_loss)
            restart()            break
        computer_predict = computer_model(paddle.to_tensor(rule.map, dtype='float32',stop_gradient=False))#电脑方预测
        for pred in np.argsort(-computer_predict.numpy()):            if pred in remain:
                remain.remove(pred)                break
        rule.map[pred] = computer
        Qchart.update(pred,'computer')        print('computer down at {}'.format(pred))
        overcode=rule.checkover(pred, computer)        if overcode == computer:
            player_loss = paddle.nn.functional.mse_loss(player_predict, paddle.to_tensor(-1 * Qchart.playerstep, dtype='float32', stop_gradient=False))
            computer_loss = paddle.nn.functional.mse_loss(computer_predict, paddle.to_tensor(Qchart.computerstep, dtype='float32', stop_gradient=False))            print("Computer Victory!")            print(rule.map.reshape(xsize,ysize))            #print("epoch:{}\tplayer loss:{}\tcomputer loss:{}".format(epoch,player_loss.numpy()[0],computer_loss.numpy()[0]))
            modelupdate(player_loss,computer_loss)
            restart()            break
        elif overcode == 0:
            player_loss = paddle.nn.functional.mse_loss(player_predict, paddle.to_tensor(Qchart.playerstep, dtype='float32', stop_gradient=False))
            computer_loss = paddle.nn.functional.mse_loss(computer_predict, paddle.to_tensor(Qchart.computerstep, dtype='float32', stop_gradient=False))            print("Draw!")            print(rule.map.reshape(xsize,ysize))            #print("epoch:{}\tplayer loss:{}\tcomputer loss:{}".format(epoch,player_loss.numpy()[0],computer_loss.numpy()[0]))
            modelupdate(player_loss,computer_loss)
            restart()            break
登录后复制
   

输出格式

player down at 7computer down at 3player down at 1computer down at 8player down at 6computer down at 2player down at 0computer down at 5Computer Victory!
[[1 1 2]
 [2 0 2]
 [1 1 2]]
登录后复制
   

以上就是Tic-Tac-Toe:井字游戏(井字棋)的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号