模型压缩之聚类量化

P粉084495128
发布: 2025-07-31 10:43:09
原创
604人浏览过
本文围绕模型压缩中的聚类量化展开,先概述模型量化是通过简化参数比特位存储实现压缩。重点介绍Deep Compression的聚类量化思路,包括参数聚类等步骤,还给出用K-Means算法实现聚类量化的代码,搭建网络训练并展示量化前后权重分布及效果,体现聚类量化的作用。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

模型压缩之聚类量化 - php中文网

模型压缩之聚类量化

  • 上午刚整完模型压缩之剪枝(MLP)(cv领域)就闲的无聊,那干脆再整个量化吧

0 量化概述

  • 模型量化(quantization)通常是指这样一种模型压缩的方法:通过对模型的参数进行比特位存储上的简化而实现对模型在存储空间上的压缩。比如,将浮点格式存在的模型参数用int8进行简化,甚至进行[-1,1]这种最极端的简化等等

1 聚类量化 (量化方式的一种)

  • 首先看一篇比较经典且常规的量化思路,来自于ICLR2016的best paper,Deep Compression。这篇论文将剪枝、量化、编码三者进行结合,而此处我们仅仅关注量化这一点。
  • 如下图(聚4个类)所示将连续的权重离散化,实现量化,结合项目结果图看

模型压缩之聚类量化 - php中文网

聚类量化实现步骤

可图大模型
可图大模型

可图大模型(Kolors)是快手大模型团队自研打造的文生图AI大模型

可图大模型32
查看详情 可图大模型
  • 1.进行参数聚类(这种聚类比较特殊,是在一维空间上进行的,能够发现这种分布的不均匀性,也是一种能力)。
  • 2.建立位置和类别的映射表。
  • 3.将每个类别的数替换为一个数。
  • 4.训练模型。

2 项目结果

  • 本项目实现如何对模型进行量化处理
  • 如下图,量化前后的结果展示,将将连续的权重离散化,通过K-Means聚类算法(聚8个类)离散化

模型压缩之聚类量化 - php中文网 模型压缩之聚类量化 - php中文网

3 前馈知识

  • 需要了解K-Means聚类算法
  • 此结为聚类量化的核心思想
In [1]
import paddlefrom sklearn.cluster import KMeans
登录后复制
In [33]
# 通过k_means实现对矩阵元素的分类,返回分类后的矩阵和聚类中心def k_means_cpu(weight, n_clusters, init='k-means++', max_iter=50):
    # flatten the weight for computing k-means
    org_shape = weight.shape
    weight = paddle.to_tensor(weight)
    weight = paddle.reshape(weight, [-1, 1])  # single feature
    if n_clusters > weight.size:
        n_clusters = weight.size

    k_means = KMeans(n_clusters=n_clusters, init=init, n_init=1, max_iter=max_iter)
    k_means.fit(weight)

    centroids = k_means.cluster_centers_
    labels = k_means.labels_
    labels = labels.reshape(org_shape)    return paddle.reshape(paddle.to_tensor(centroids), [-1, 1]), paddle.to_tensor(labels, "int32")# 将聚类中心的数值,替换掉分类后矩阵中的类别def reconstruct_weight_from_k_means_result(centroids, labels):
    weight = paddle.zeros_like(labels, "float32")    for i, c in enumerate(centroids.numpy().squeeze()):
        weight[labels == i] = c.item()    return weight
登录后复制
In [3]
# 随机初始个权重w = paddle.rand([4, 5])print(w)
登录后复制
W0127 19:32:47.801596   141 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.0, Runtime API Version: 10.1
W0127 19:32:47.808570   141 device_context.cc:465] device: 0, cuDNN Version: 7.6.
登录后复制
Tensor(shape=[4, 5], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
       [[0.76845109, 0.90174955, 0.35342011, 0.94143867, 0.18771467],
        [0.17440563, 0.73438221, 0.36310545, 0.46279457, 0.55644131],
        [0.97877306, 0.35445851, 0.06692132, 0.35885036, 0.06532700],
        [0.39970225, 0.02711770, 0.99831027, 0.43467325, 0.11231221]])
登录后复制
In [69]
# 返回聚类中心centroids,和类别矩阵labelscentroids, labels = k_means_cpu(w, 2)print(centroids)print(labels)
登录后复制
Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
       [[0.25852331],
        [0.83993517]])
Tensor(shape=[4, 5], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
       [[1, 1, 0, 1, 0],
        [0, 1, 0, 0, 1],
        [1, 0, 0, 0, 0],
        [0, 0, 1, 0, 0]])
登录后复制
In [5]
# reconstruct_weight_from_k_means_result返回聚类后的权重# 将此代码块结果跟上随机初始矩阵、分类矩阵进行比对,发现权重都被聚类中心值替换w_q = reconstruct_weight_from_k_means_result(centroids, labels)print(w_q)
登录后复制
Tensor(shape=[4, 5], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
       [[0.88718414, 0.88718414, 0.27980316, 0.88718414, 0.27980316],
        [0.27980316, 0.88718414, 0.27980316, 0.27980316, 0.27980316],
        [0.88718414, 0.27980316, 0.27980316, 0.27980316, 0.27980316],
        [0.27980316, 0.27980316, 0.88718414, 0.27980316, 0.27980316]])
登录后复制
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/tensor.py:624: UserWarning: paddle.assign doesn't support float64 input now due to current platform protobuf data limitation, we convert it to float32
  "paddle.assign doesn't support float64 input now due "
登录后复制

代码实现

In [6]
import paddleimport paddle.nn as nnimport paddle.nn.functional as Ffrom paddle.vision import datasets, transformsimport paddle.utilsimport numpy as npimport mathfrom copy import deepcopyfrom matplotlib import pyplot as pltfrom paddle.io import Datasetfrom paddle.io import DataLoaderfrom sklearn.cluster import KMeans
登录后复制
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/__init__.py:107: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  from collections import MutableMapping
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/rcsetup.py:20: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  from collections import Iterable, Mapping
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/colors.py:53: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  from collections import Sized
登录后复制
In [40]
# 搭建基础线性层class QuantLinear(nn.Linear):
    def __init__(self, in_features, out_features, bias=True):
        super(QuantLinear, self).__init__(in_features, out_features, bias)
        self.weight_labels = None
        self.bias_labels = None
        self.num_cent = None
        self.quant_flag = False
        self.quant_bias = False
        
    def kmeans_quant(self, bias=False, quantize_bit=4):
        self.num_cent = 2 ** quantize_bit
        
        w = self.weight
        centroids, self.weight_labels = k_means_cpu(w.cpu().numpy(), self.num_cent)
        w_q = reconstruct_weight_from_k_means_result(centroids, self.weight_labels)
        self.weight.set_value(w_q)        
        if bias:
            b = self.bias
            centroids, self.bias_labels = k_means_cpu(b.cpu().numpy(), self.num_cent)
            b_q = reconstruct_weight_from_k_means_result(centroids, self.bias_labels)
            self.bias.data = b_q.float()
        
        self.quant_flag = True
        self.quant_bias = bias    
    def kmeans_update(self):
        if not self.quant_flag:            return
        
        new_weight_data = paddle.zeros_like(self.weight_labels, "float32")        for i in range(self.num_cent):
            mask_cl = (self.weight_labels == i).float()
            new_weight_data += (self.weight.data * mask_cl).sum() / mask_cl.sum() * mask_cl
        self.weight.data = new_weight_data        
        if self.quant_bias:
            new_bias_data = paddle.zeros_like(self.bias_labels, "float32")            for i in range(self.num_cent):
                mask_cl = (self.bias_labels == i).float()
                new_bias_data += (self.bias.data * mask_cl).sum() / mask_cl.sum() * mask_cl
            self.bias.data = new_bias_data
登录后复制
In [39]
# 搭建基础卷积层class QuantConv2d(nn.Conv2D):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,
     groups=1, padding_mode='zeros', weight_attr=None, bias_attr=None, data_format='NCHW'):
        super(QuantConv2d, self).__init__(in_channels, out_channels, 
            kernel_size, stride, padding, dilation, groups, padding_mode, weight_attr, bias_attr, data_format)
        self.weight_labels = None
        self.bias_labels = None
        self.num_cent = None
        self.quant_flag = False
        self.quant_bias = False
        
    def kmeans_quant(self, bias=False, quantize_bit=4):
        self.num_cent = 2 ** quantize_bit
        
        w = self.weight
        centroids, self.weight_labels = k_means_cpu(w.cpu().numpy(), self.num_cent)
        w_q = reconstruct_weight_from_k_means_result(centroids, self.weight_labels)
        self.weight.set_value(w_q)        
        if bias:
            b = self.bias
            centroids, self.bias_labels = k_means_cpu(b.cpu().numpy(), self.num_cent)
            b_q = reconstruct_weight_from_k_means_result(centroids, self.bias_labels)
            self.bias.data = b_q.float()
        
        self.quant_flag = True
        self.quant_bias = bias    
    def kmeans_update(self):
        if not self.quant_flag:            return
        
        new_weight_data = paddle.zeros_like(self.weight_labels, "float32")        for i in range(self.num_cent):
            mask_cl = (self.weight_labels == i).float()
            new_weight_data += (self.weight.data * mask_cl).sum() / mask_cl.sum() * mask_cl
        self.weight.data = new_weight_data        
        if self.quant_bias:
            new_bias_data = paddle.zeros_like(self.bias_labels)            for i in range(self.num_cent):
                mask_cl = (self.bias_labels == i).float()
                new_bias_data += (self.bias.data * mask_cl).sum() / mask_cl.sum() * mask_cl
            self.bias.data = new_bias_data
登录后复制
In [10]
# 搭建网络class ConvNet(nn.Layer):
    def __init__(self):
        super(ConvNet, self).__init__()

        self.conv1 = QuantConv2d(3, 32, kernel_size=3, padding=1, stride=1)
        self.relu1 = nn.ReLU()
        self.maxpool1 = nn.MaxPool2D(2)

        self.conv2 = QuantConv2d(32, 64, kernel_size=3, padding=1, stride=1)
        self.relu2 = nn.ReLU()
        self.maxpool2 = nn.MaxPool2D(2)

        self.conv3 = QuantConv2d(64, 64, kernel_size=3, padding=1, stride=1)
        self.relu3 = nn.ReLU()

        self.linear1 = QuantLinear(7*7*64, 10)        
    def forward(self, x):
        out = self.maxpool1(self.relu1(self.conv1(x)))
        out = self.maxpool2(self.relu2(self.conv2(out)))
        out = self.relu3(self.conv3(out))
        out = paddle.reshape(out, [out.shape[0], -1])
        out = self.linear1(out)        return out    def kmeans_quant(self, bias=False, quantize_bit=4):
        # Should be a less manual way to quantize
        # Leave it for the future
        self.conv1.kmeans_quant(bias, quantize_bit)
        self.conv2.kmeans_quant(bias, quantize_bit)
        self.conv3.kmeans_quant(bias, quantize_bit)
        self.linear1.kmeans_quant(bias, quantize_bit)    
    def kmeans_update(self):
        self.conv1.kmeans_update()
        self.conv2.kmeans_update()
        self.conv3.kmeans_update()
        self.linear1.kmeans_update()
登录后复制
In [11]
# 打印输出网络结构convNet_Net = ConvNet()
paddle.summary(convNet_Net,(1, 3, 28, 28))
登录后复制
---------------------------------------------------------------------------
 Layer (type)       Input Shape          Output Shape         Param #    
===========================================================================
 QuantConv2d-1    [[1, 3, 28, 28]]     [1, 32, 28, 28]          896      
    ReLU-1       [[1, 32, 28, 28]]     [1, 32, 28, 28]           0       
  MaxPool2D-1    [[1, 32, 28, 28]]     [1, 32, 14, 14]           0       
 QuantConv2d-2   [[1, 32, 14, 14]]     [1, 64, 14, 14]        18,496     
    ReLU-2       [[1, 64, 14, 14]]     [1, 64, 14, 14]           0       
  MaxPool2D-2    [[1, 64, 14, 14]]      [1, 64, 7, 7]            0       
 QuantConv2d-3    [[1, 64, 7, 7]]       [1, 64, 7, 7]         36,928     
    ReLU-3        [[1, 64, 7, 7]]       [1, 64, 7, 7]            0       
 QuantLinear-1      [[1, 3136]]            [1, 10]            31,370     
===========================================================================
Total params: 87,690
Trainable params: 87,690
Non-trainable params: 0
---------------------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 0.69
Params size (MB): 0.33
Estimated Total Size (MB): 1.04
---------------------------------------------------------------------------
登录后复制
{'total_params': 87690, 'trainable_params': 87690}
登录后复制
In [12]
# 图像转tensor操作,也可以加一些数据增强的方式,例如旋转、模糊等等# 数据增强的方式要加在Compose([  ])中def get_transforms(mode='train'):
    if mode == 'train':
        data_transforms = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])    else:
        data_transforms = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])    return data_transforms# 获取官方MNIST数据集def get_dataset(name='MNIST', mode='train'):
    if name == 'MNIST':
        dataset = datasets.MNIST(mode=mode, transform=get_transforms(mode))    return dataset# 定义数据加载到模型形式def get_dataloader(dataset, batch_size=128, mode='train'):
    dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=2, shuffle=(mode == 'train'))    return dataloader
登录后复制
In [13]
# 初始化函数,用于模型初始化class AverageMeter():
    """ Meter for monitoring losses"""
    def __init__(self):
        self.avg = 0
        self.sum = 0
        self.cnt = 0
        self.reset()    def reset(self):
        """reset all values to zeros"""
        self.avg = 0
        self.sum = 0
        self.cnt = 0

    def update(self, val, n=1):
        """update avg by val and n, where val is the avg of n values"""
        self.sum += val * n
        self.cnt += n
        self.avg = self.sum / self.cnt
登录后复制
In [15]
# 网络训练def train_one_epoch(model, dataloader, criterion, optimizer, epoch, total_epoch, report_freq=20):
    print(f'----- Training Epoch [{epoch}/{total_epoch}]:')
    loss_meter = AverageMeter()
    acc_meter = AverageMeter()
    model.train()    for batch_idx, data in enumerate(dataloader):
        image = data[0]
        label = data[1]

        out = model(image)
        loss = criterion(out, label)

        loss.backward()
        optimizer.step()
        optimizer.clear_grad()

        pred = nn.functional.softmax(out, axis=1)
        acc1 = paddle.metric.accuracy(pred, label)

        batch_size = image.shape[0]
        loss_meter.update(loss.cpu().numpy()[0], batch_size)
        acc_meter.update(acc1.cpu().numpy()[0], batch_size)        if batch_idx > 0 and batch_idx % report_freq == 0:            print(f'----- Batch[{batch_idx}/{len(dataloader)}], Loss: {loss_meter.avg:.5}, Acc@1: {acc_meter.avg:.4}')    print(f'----- Epoch[{epoch}/{total_epoch}], Loss: {loss_meter.avg:.5}, Acc@1: {acc_meter.avg:.4}')
登录后复制
In [25]
# 网络预测def validate(model, dataloader, criterion, report_freq=10):
    print('----- Validation')
    loss_meter = AverageMeter()
    acc_meter = AverageMeter()
    model.eval()    for batch_idx, data in enumerate(dataloader):
        image = data[0]
        label = data[1]

        out = model(image)
        loss = criterion(out, label)

        pred = paddle.nn.functional.softmax(out, axis=1)
        acc1 = paddle.metric.accuracy(pred, label)
        batch_size = image.shape[0]
        loss_meter.update(loss.cpu().numpy()[0], batch_size)
        acc_meter.update(acc1.cpu().numpy()[0], batch_size)        if batch_idx > 0 and batch_idx % report_freq == 0:            print(f'----- Batch [{batch_idx}/{len(dataloader)}], Loss: {loss_meter.avg:.5}, Acc@1: {acc_meter.avg:.4}')    print(f'----- Validation Loss: {loss_meter.avg:.5}, Acc@1: {acc_meter.avg:.4}')
登录后复制
In [64]
def main():
    total_epoch = 1
    batch_size = 256

    model = ConvNet()
    train_dataset = get_dataset(mode='train')
    train_dataloader = get_dataloader(train_dataset, batch_size, mode='train')
    val_dataset = get_dataset(mode='test')
    val_dataloader = get_dataloader(val_dataset, batch_size, mode='test')
    criterion = nn.CrossEntropyLoss()
    scheduler = paddle.optimizer.lr.CosineAnnealingDecay(0.02, total_epoch)
    optimizer = paddle.optimizer.Momentum(learning_rate=scheduler,
                                          parameters=model.parameters(),
                                          momentum=0.9,
                                          weight_decay=5e-4)

    eval_mode = False
    if eval_mode:
        state_dict = paddle.load('./ConvNet_ep200.pdparams')
        model.set_state_dict(state_dict)
        validate(model, val_dataloader, criterion)        return


    save_freq = 50
    test_freq = 10
    for epoch in range(1, total_epoch+1):
        train_one_epoch(model, train_dataloader, criterion, optimizer, epoch, total_epoch)
        scheduler.step()        if epoch % test_freq == 0 or epoch == total_epoch:
            validate(model, val_dataloader, criterion)        if epoch % save_freq == 0 or epoch == total_epoch:
            paddle.save(model.state_dict(), f'./ConvNet_ep{epoch}.pdparams')
            paddle.save(optimizer.state_dict(), f'./ConvNet_ep{epoch}.pdopts')
    
    quant_model = deepcopy(model)    print('=='*10)    print('2 bits quantization')
    quant_model.kmeans_quant(bias=False, quantize_bit=4)
    validate(quant_model, val_dataloader, criterion)    return model, quant_model
登录后复制
In [65]
# 返回值是量化前后网络模型# main()中quantize_bit控制聚类个数,聚类为quantize_bit*2个# 聚类数越多,量化后的模型越接近训练模型,但参数相应增加,所以根据实际情况取舍model, quant_model = main()
登录后复制
In [60]
from matplotlib import pyplot as plt
登录后复制
In [61]
# 定义模型权重展示函数def plot_weights(model):
    modules = [module for module in model.sublayers()]
    num_sub_plot = 0
    for i, layer in enumerate(modules):        if hasattr(layer, 'weight'):
            plt.subplot(221+num_sub_plot)
            w = layer.weight
            w_one_dim = w.cpu().numpy().flatten()
            plt.hist(w_one_dim, bins=50)
            num_sub_plot += 1
    plt.show()
登录后复制
In [66]
# 量化前的权重plot_weights(model)
登录后复制
<Figure size 432x288 with 4 Axes>
登录后复制
In [67]
# 量化后的权重plot_weights(quant_model)
登录后复制
<Figure size 432x288 with 4 Axes>
登录后复制

以上就是模型压缩之聚类量化的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号